Problem A. 18

The 2×2 matrix representing a rotation of the $x y$ plane is

$$
\mathrm{T}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{A.91}\\
\sin \theta & \cos \theta
\end{array}\right)
$$

Show that (except for certain special angles-what are they?) this matrix has no real eigenvalues. (This reflects the geometrical fact that no vector in the plane is carried into itself under such a rotation; contrast rotations in three dimensions.) This matrix does, however, have complex eigenvalues and eigenvectors. Find them. Construct a matrix S that diagonalizes T. Perform the similarity transformation (STS ${ }^{-1}$) explicitly, and show that it reduces T to diagonal form.

Solution

The aim here is to solve the eigenvalue problem for the given matrix.

$$
\mathrm{Ta}=\lambda \mathrm{a}
$$

Bring λa to the left side and combine the terms.

$$
\begin{equation*}
(T-\lambda I) a=0 \tag{1}
\end{equation*}
$$

Since a $\neq 0$, the matrix in parentheses must be singular, that is,

$$
\begin{gathered}
\operatorname{det}(\mathbf{T}-\lambda \mathbf{I})=0 \\
\left|\begin{array}{cc}
\cos \theta-\lambda & -\sin \theta \\
\sin \theta & \cos \theta-\lambda
\end{array}\right|=0 \\
(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=0 \\
\lambda^{2}-2 \lambda \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta=0 \\
\lambda^{2}-2 \lambda \cos \theta+1=0 \\
\lambda=\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2} \\
\lambda=\cos \theta \pm i \sin \theta .
\end{gathered}
$$

Observe that the eigenvalue λ is real only if θ is an integer multiple of $\pi: \theta=n \pi$, where $n=0, \pm 1, \pm 2, \ldots$. Otherwise, the eigenvalues, $\lambda_{+}=\cos \theta+i \sin \theta$ and $\lambda_{-}=\cos \theta-i \sin \theta$, are complex. To find the corresponding eigenvectors, plug them back into equation (1).

$$
\begin{array}{cc}
\left(\mathrm{T}-\lambda_{+} \mathrm{I}\right) \mathrm{a}_{+}=0 & \left(\mathrm{~T}-\lambda_{-} \mathrm{I}\right) \mathrm{a}_{-}=0 \\
\left(\begin{array}{rr}
-i \sin \theta & -\sin \theta \\
\sin \theta & -i \sin \theta
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0}{0} & \left(\begin{array}{rr}
i \sin \theta & -\sin \theta \\
\sin \theta & i \sin \theta
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0}{0}
\end{array}
$$

Turn each matrix equation into a system of equations and solve each for either a_{1} or a_{2}.

$$
\left.\left.\left.\begin{array}{rr}
-i \sin \theta a_{1}-\sin \theta a_{2}=0 \\
\sin \theta a_{1}-i \sin \theta a_{2}=0
\end{array}\right\} \quad \begin{array}{r}
i \sin \theta a_{1}-\sin \theta a_{2}=0 \\
-i a_{1}-a_{2}=0 \\
a_{1}-i a_{2}=0
\end{array}\right\} \quad \begin{array}{r}
i a_{1}-a_{2}=0 \\
a_{1}+i a_{2}=0
\end{array}\right\}, \begin{aligned}
& a_{1}=-i a_{2} \\
& a_{2}=-i a_{1} \\
& a_{+}=\binom{a_{1}}{a_{2}}=\binom{a_{1}}{-i a_{1}}
\end{aligned} \begin{array}{rr}
a_{-}=\binom{a_{1}}{a_{2}}=\binom{-i a_{2}}{a_{2}}
\end{array}
$$

Therefore, the eigenvectors corresponding to $\lambda_{+}=\cos \theta+i \sin \theta$ and $\lambda_{-}=\cos \theta-i \sin \theta$ are

$$
\mathrm{a}_{+}=a_{1}\binom{1}{-i} \quad \text { and } \quad \mathrm{a}_{-}=a_{2}\binom{-i}{1},
$$

respectively, where a_{1} and a_{2} are arbitrary constants (these are due to the fact that the eigenvalue problem is homogeneous). In order to diagonalize T , let S^{-1} be the 2×2 matrix whose columns are the eigenvectors with $a_{1}=a_{2}=1$ for simplicity.

$$
\mathrm{S}^{-1}=\left(\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right)
$$

Determine S by finding the inverse of this matrix.

$$
\begin{aligned}
\left(\begin{array}{rr|rr}
1 & -i & 1 & 0 \\
-i & 1 & 0 & 1
\end{array}\right) & \sim\left(\begin{array}{rr|rr}
1 & -i & 1 & 0 \\
0 & 2 & i & 1
\end{array}\right) \\
& \sim\left(\begin{array}{rr|rl}
1 & -i & 1 & 0 \\
0 & 1 & \frac{i}{2} & \frac{1}{2}
\end{array}\right) \\
& \sim\left(\begin{array}{rr|cc}
1 & 0 & \frac{1}{2} & \frac{i}{2} \\
0 & 1 & \frac{i}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Consequently,

$$
\mathrm{S}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{i}{2} \\
\frac{i}{2} & \frac{1}{2}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right) .
$$

Now calculate STS $^{-1}$ and check that the eigenvalues are along the main diagonal with zeros elsewhere.

$$
\begin{aligned}
\text { STS }^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{i}{2} \\
\frac{i}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right) & =\left(\begin{array}{cc}
\frac{1}{2} & \frac{i}{2} \\
\frac{i}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta+i \sin \theta & -i \cos \theta-\sin \theta \\
\sin \theta-i \cos \theta & -i \sin \theta+\cos \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \theta+i \sin \theta & 0 \\
0 & \cos \theta-i \sin \theta
\end{array}\right)
\end{aligned}
$$

